Integrated Circuits (Chips)

Pin numbers

The pins are numbered anti-clockwise around the IC (chip) starting near the notch or dot. The diagram shows the numbering for 8-pin and 14-pin ICs, but the principle is the same for all sizes. 

IC holders (DIL sockets)

IC holder (DIL socket)ICs (chips) are easily damaged by heat when soldering and their short pins cannot be protected with a heat sink. Instead we use an IC holder, strictly called a DIL socket (DIL = Dual In-Line), which can be safely soldered onto the circuit board. The IC is pushed into the holder when all soldering is complete.
IC holders are only needed when soldering so they are not used on breadboards.
Commercially produced circuit boards often have ICs soldered directly to the board without an IC holder, usually this is done by a machine which is able to work very quickly. Please don't attempt to do this yourself because you are likely to destroy the IC and it will be difficult to remove without damage by de-soldering.

Removing an IC from its holder

If you need to remove an IC it can be gently prised out of the holder with a small flat-blade screwdriver. Carefully lever up each end by inserting the screwdriver blade between the IC and its holder and gently twisting the screwdriver. Take care to start lifting at both ends before you attempt to remove the IC, otherwise you will bend and possibly break the pins. 

Static precautions

Antistatic bags for ICs
Antistatic bags for ICs
Photograph © Rapid Electronics
Many ICs are static sensitive and can be damaged when you touch them because your body may have become charged with static electricity, from your clothes for example. Static sensitive ICs will be supplied in antistatic packaging with a warning label and they should be left in this packaging until you are ready to use them.
It is usually adequate to earth your hands by touching a metal water pipe or window frame before handling the IC but for the more sensitive (and expensive!) ICs special equipment is available, including earthed wrist straps and earthed work surfaces. You can make an earthed work surface with a sheet of aluminium kitchen foil and using a crocodile clip to connect the foil to a metal water pipe or window frame with a 10kohm resistor in series. 


PDF files
To view and print PDF files you need an Acrobat Reader which may be downloaded free for WindowsMac,RISC OS, or UNIX/Linux computers. If you are not sure which type of computer you have it is probably Windows.
Datasheets are available for most ICs giving detailed information about their ratings and functions. In some cases example circuits are shown. The large amount of information with symbols and abbreviations can make datasheets seem overwhelming to a beginner, but they are worth reading as you become more confident because they contain a great deal of useful information for more experienced users designing and testing circuits.
Datasheets are available as PDF files from:

sinking and sourcing current

Sinking and sourcing current

IC outputs are often said to 'sink' or 'source' current. The terms refer to the direction of the current at the IC's output.
If the IC is sinking current it is flowing into the output. This means that a device connected between the positive supply (+Vs) and the IC output will be switched on when the output is low (0V).
If the IC is sourcing current it is flowing out of the output. This means that a device connected between the IC output and the negative supply (0V) will be switched on when the output is high (+Vs).
It is possible to connect two devices to an IC output so that one is on when the output is low and the other is on when the output is high. This arrangement is used in theLevel Crossing project to make the red LEDs flash alternately.
The maximum sinking and sourcing currents for an IC output are usually the same but there are some exceptions, for example 74LS TTL logic ICs can sink up to 16mA but only source 2mA.